Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
- Дата:11.11.2024
- Категория: Документальные книги / Биографии и Мемуары
- Название: Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор: Борис Розенфельд
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Проективное пространство над алгеброй является результатом дополнения аффинного пространства бесконечно удаленными и идеальными точками, причем каждая система параллельных линий имеет одну общую бесконечно удаленную точку, а идеальные точки, которые имеются только в случае алгебр с делителями нуля, определяются смежными прямыми. Точки n-мерного проективного пространства представляются векторами (n + 1)-мерного аффинного пространства с точностью до правых скалярних множителей. Прямые линии и m- мерные плоскости проективного простраства представляются 2-мерными и (m+1) -мерными подпространствами линейного пространства или подмодулями модуля.
Так как бесконечно удаленные точки, которыми дополнено аффинное пространство, представляются векторами m-мерного линейного подпространства или подмодуля, эти бесконечно удаленные точки образуют бесконечно удаленную гиперплоскость проективного пространства. Идеальные точки представляются векторами, определяющими прямые смежные с прямыми, которые определяются векторами, представляющими бесконечно удаленные точки.
Проективные преобразования имеют вид x'=Af(x), где А - линейный оператор (n + 1)-мерного линейного пространства или модуля, а f(x) - автоморфизм алгебры.
Гиперплоскости, т.е. (n-1)-мерные плоскости аффинных и проективных пространств, определяются соответственными уравнениями ux+v=0 и ux=0, где u - ковектор линейного пространства или модуля, т.е. вектор пространства или модуля, сопряженного с рассматриваемым. В случае проективного пространства ковектор u определен с точностью до левых скалярных множителей, на этом основан принцип двойственности проективного пространства.
Если в аффинном пространстве над коммутативной алгеброй определено скалярное произведение векторов (a,b)=(b,a), т.е. скалярный квадрат (а,а) является квадратичной формой, мы получаем квадратичное евклидово или псевдоевклидово пространство.
Если в алгебре имеется инволюция, т.е.такой переход от всякого элемента х к элементу х*, что (х*)* =х и (xy)* =y*x*, и в аффинном пространстве над этой алгеброй определено скалярное произведение (a,b) = (b,a)*, т.е. скалярный квадрат является эрмитовой формой, мы получаем эрмитовы евклидовы и псевдоевклидовы пространства.
Если такие же скалярные произведения векторов определены в проективном пространстве над коммутативной алгеброй или над алгеброй с инволюцией, мы получаем квадратичные и эрмитовы неевклидовы пространства, т.е. эллиптические, гиперболические, псевдоэллиптические и псевдогиперболические пространства.
Если скалярное произведение таково, что (a,b)= -(b,a) или (a,b)=- (b,a)*, то мы получаем квадратичное или эрмитово симплектическое пространство.
Геометрия пространств с делителями нуля в значительной степени разработана в моих книгах 1955 и 1997 гг., а также в работах моих учеников.
Вещественные пространства и многообразия
В случае вещественного евклидова пространства скалярный квадрат (а,а) является положительно определенной квадратичной формой, а в случае вещественного псевдоевклидова пространства (а,а) - знаконеопределенная квадратичная форма, и если индекс этой формы равен k, псевдоевклидово пространство называется пространством индекса k. Пространство-
время специальной теории относительности является 4-мерным псевдоевклидовым пространством индекса 1.
Расстоянием между точками A и В называется квадратвый корень из склярного квадрата (а,а) вектора а = AB. Преобразования этих пространств, сохраняющие расстояния между их точками, называются движениями. Движения этих пространств являются частными случаями их аффинных преобразований.
Вещественное эллиптическое пространство (неевклидово пространство Римана) размерности n можно определить как гиперсферу (x,x)=r2 с отождествленными диаметрально противоположными точками в (n + 1)- мерном евкидовом пространстве. Роль прямых линий и m-мерных плоскостей эллиптического пространства играют большие круги и большие m-мерные сферы гиперсферы. Движения эллиптического пространства определяются вращениями гиперсферы.
Гиперболическое пространство (неевклидово пространство Лобачевского) можно определить как гиперсферу мнимого радиуса (x,x)= - q2 в (n +1)-мерном псевдоевклидовом пространстве индекса 1. Прямые линии и m-мерные плоскости гиперболического простраства определяются сечениями гиперсферы мнимого радиуса ее диаметральными 2-мерными и (m + 1)-мерными плоскостями Движения гиперболического пространства определяются вращениями гиперсферы мнимого радиуса. Гиперсфера мнимого радиуса в псевдоевклидовом пространстве индекса 1 имеет вид двуполостного гиперболоида и состоит из двух полостей. Лобачевский определял открытое им пространство не с помощью псевдоевклидова пространства, которое в его время было неизвестно, а как пространство, получаемое из евклидова при отказе от V постулата Евклида (аксиомы параллельности). Лобачевский заметил, что формулы тригонометрии в его пространстве могут быть получены из формул обычной сферической тригонометрии, если считать радиус сферы чисто мнимым числом.
Так как точки гиперсферы мнимого радиуса в пространстве-времени специальной теории относительности изображают скорости движущихся материальных точек, закон сложения скоростей в специальной теории относительности эквивалентен одной из тригонометрических формул пространства Лобачевского.
О многомерных евклидовом и неевклидовых пространствах мечтал поэт Валерий Брюсов, который в стихотворении "Мир N измерений" писал: Ширь, глубь, высь - лишь три координаты. Дальше хода нет. Засов закрыт. С Пифагором слушай сфер сонаты, Атомам дли счет, как Демокрит. Путь по числам - приведет нас в Рим он, Все пути ума ведут туда. То же в новом - Лобачевский, Риман. Та же в зубы узкая узда. Но живут, живут в N измереньях Люди воль, циклопы мысли, те, Кому жалки мы с ничтожным зреньем. С нашим шагом по одной черте.
Лобачевский действительно рассматривал только трехмерное гиперболическое пространство, но Эудженио Бельтрами еще в 1868 г. рассмотрел n-мерное гиперболическое пространстно, а Риман в своей знаменитой лекции "О гипотезах, лежащих в основании геометрии" рассматривал n-мерные пространства переменной кривизны, называемые теперь римановыми пространствами, и n-мерные пространства постоянной кривизны, к которым относится эллиптическое пространство как их частный случай.
Заменяя в определении n-мерных эллиптического и гиперболического пространств (n +1)-мерные евклидово пространство и псевдоевклидово пространство индекса 1 псевдоевклидовыми пространствами индексов k и k+1, мы получим псевдоеллиптическое и псевдогиперболическое пространства индекса k. Прямые линии, m-мерные плоскости и движения в этих пространствах определяются так же как в гиперболическом пространстве.
(adsbygoogle = window.adsbygoogle || []).push({});- Теория относительности для миллионов - Мартин Гарднер - Прочая научная литература
- Принцип относительности - Вадим Проскурин - Киберпанк
- СССР и Гоминьдан. Военно-политическое сотрудничество. 1923—1942 гг. - Ирина Владимировна Волкова - История
- Красный террор в Россiи 1918 - 1923 - С Мельгунов - История
- Апология математика - Годфри Гарольд Харди - Биографии и Мемуары / Математика / Науки: разное