Городомля. Немецкие исследователи ракет в России - Вернер Альбринг
- Дата:17.10.2024
- Категория: Документальные книги / Биографии и Мемуары
- Название: Городомля. Немецкие исследователи ракет в России
- Автор: Вернер Альбринг
- Год: 1997
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
В последующие годы господин Венцель стал моим сотрудником в работе по измерениям в сверхзвуковой аэродинамической трубе. Эта труба запускалась с помощью сжатого воздуха. Два чудесных поршневых компрессора несколько часов закачивали воздух с давлением 150 атмосфер в батарею больших стальных баллонов. Мы могли затем продувать трубу в течение нескольких минут со сверхзвуковой скоростью и делать измерения в потоке. Однажды на одном из компрессоров случилась авария, сломался шатун. Возникло большое возбуждение в русском руководстве. Пришел директор и тут же обвинил молодого симпатичного механика, что это он виновен в поломке, так как якобы заснул во время работы. Молодой человек был в ужасе от такого обвинения и оправдывался, что он не спал, и следил за работой компрессора. И вдруг — большой бух и крах, и машина сломалась. Господин Венцель во время этого диспута рассматривал некоторые разрушенные детали, собрал разломанные куски и как опытный авиаинженер сразу увидел следы усталостного излома в материале. Он показал их мне, пока все остальные еще горячо разговаривали. Я обратился к русскому директору и обещал быстро представить ему записку о причине поломки, он согласился и попрощался. Молодому русскому мы ободряюще кивнули, он понял, что мы убеждены в его невиновности. Господин Венцель быстро составил свою записку, снабдил ее своими комментариями и фотографиями места излома, убеждавшими в действительной причине аварии. Директор был доволен, вскоре были получены запасные детали, и оба компрессора опять работали под присмотром бравого молодого компрессорного машиниста.
КАКУЮ ТЕМПЕРАТУРУ ИМЕЕТ КОРПУС РАКЕТЫ ПРИ ПОЛЕТЕ?
В первые месяцы начала работы в Городомле нас посетил приехавший из Москвы господин Ветошкин{8} ответственный в министерстве за ракетостроение; высокий, крепкого сложения мужчина, примерно пятидесяти лет, со спокойными задумчивыми чертами лица. Главного инженера, господина Бош-Коцюбинского, доктора Вольфа, инженера Бласса, господина Зигмунда и меня поздним вечером пригласили на разговор. Господин Ветошкин хотел услышать наше мнение о причинах саморазрушения летящей ракеты, или «преждевременном взрыве ракеты в воздухе», как называли эту проблему ракетостроители из Пенемюнде.
Речь шла о следующем. На полигоне в Пенемюнде специалисты наблюдали, как ракеты разрушались, не долетая до цели. Тогда не удалось точно определить причины этого явления. Подтверждалось, что ракеты имели оптимальные прочностные характеристики соответственно своим аэродинамическим параметрам. Они должны были бы выдерживать большие нагрузки при полете к цели даже со сверхзвуковой скоростью. Тогда, в условиях жестких сроков и военной обстановки, подробное и основательное исследование этой проблемы было невозможно, и места, прочность которых казалась сомнительной, просто попытались залатать металлическими бандажами и манжетами.
В тот вечер мы не смогли дать ответ господину Ветошкину, но обещали подумать над этой проблемой. Только несколько дней спустя конструкторы спросили меня, какова может быть температура оболочки ракеты при полете. Тем самым, как мы поняли позднее, была затронута проблема фундаментального значения. Я разрешил этот актуальный вопрос довольно быстро, как одну из рутинных проблем, которые постоянно попадаются аэродинамику. Я подумал, что острие летящего со сверхзвуковой скоростью тела сильно уплотняет окружающий его воздух. Из-за сжатия температура повышается. Я тут же рассчитал температуру в зависимости от скорости и высоты полета, начертил зависимость ее от времени и передал листок конструкторам. Тем самым, как я думал, проблема была решена. Но не тут-то было. Конструкторы поговорили с одним нашим инженером, который раньше принимал участие в пробных запусках ракет в Пенемюнде. Этому человеку было известно, что во время полета температура автоматически измерялась на корпусе ракеты и передавалась на станцию слежения на земле. Он вспомнил прежние значения температуры, они были гораздо выше моих расчетных.
Господин Бласс, руководитель конструкторского отдела, и господин Тоебе, специалист по прочности, пришли ко мне и спросили о надежности моего расчета. Я еще раз все проверил и подтвердил, что при сжатии воздуха получаются те значения, которые я рассчитал. Конструктор и прочнист еще раз объяснили мне, насколько важно предварительно точно рассчитать температуру. Ведь прочность металла при повышении температуры уменьшается. По воспоминаниям инженера температура была такой высокой, что можно было ожидать потерю прочности. Однако рассчитанная мною температура лежала в области, которая не влияет на прочность материала. Я подумал: или инженер ошибается в своих воспоминаниях, или помимо сжатия окружающего воздуха есть и другие факторы, из-за которых обшивка ракеты может нагреваться. Во всяком случае, запрос вырос в постановку проблемы, которую уже нельзя было решить рутинными расчетами.
Я прервал все другие работы и несколько недель был занят только этой новой задачей. Я спрашивал себя: какого вообще самого большого значения температуры может достичь быстро летящее тело вследствие уплотнения воздуха? Ясно, что максимальная температура возникнет в головке ракеты, то есть в точке максимального давления. На основе законов термодинамики возникла простая формула. Если скорость полета возвести в квадрат, а затем ввести в расчет удельную теплоемкость воздуха, тогда можно рассчитать повышение температуры в передней критической точке, она равняется скорости в квадрате, деленной на две тысячи. Скорость полета ракеты Г-1, которая должна лететь на расстояние в тысячу километров, может достигать порядка двух тысяч метров в секунду. Тогда по моей формуле повышение температуры могло бы составить две тысячи градусов. Я ужаснулся этому результату. При такой высокой температуре плавится даже сталь. Мы же тогда думали о применении легких металлов в качестве материала для оболочки ракеты, все проекты ракеты Г-1 в Блайхероде были продуманы в этом направлении. Но эта температура могла повышаться за счет уплотнения воздуха только в одной-единственной передней критической точке. Я все еще был уверен в своей концепции. Во всех остальных местах, по моему тогдашнему воззрению, температура была намного ниже, такой, как я ее и рассчитал первоначально. Я спросил себя: есть ли еще какой-то физический фактор, который может повысить температуру? Да, есть — это трение. Трение воздуха о поверхность ракеты. Воздух, обтекающий ракету, тормозится в совсем тонком слое на ее поверхности, аэродинамики называют этот слой пограничным. Вся кинетическая энергия воздуха превращается в тепло и дает повышение температуры, которая соответствует ее значению в передней критической точке. Если учесть трение, а его нужно учитывать, тогда напрашивается вывод, что при полете в каждой точке корпуса ракеты, а не только в передней критической точке, может быть достигнута эта предельно высокая температура. И если бы ракетная оболочка нагревалась так же сильно, как и воздух, тогда было бы невозможно найти материалы, имеющие соответствующую теплостойкость.
(adsbygoogle = window.adsbygoogle || []).push({});- Сборник 'В чужом теле. Глава 1' - Ричард Карл Лаймон - Периодические издания / Русская классическая проза
- Суррогаты и сурикаты - Алла Хусейн - Боевая фантастика / Космическая фантастика / Русская классическая проза
- Долина Солнца - Луис Ламур - Вестерн
- Опасные руины - Чарльз Финли - Фэнтези
- Подводный флот Третьего рейха. Немецкие подлодки в войне, которая была почти выиграна. 1939-1945 гг. - Харальд Буш - Прочая документальная литература